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ABSTRACT 

A number of mono- and oligosaccharides derivatized with an ultraviolet-absorbing compound, ethyl p-aminobenzoate, were separat- 
ed by high-performance liquid chromatography on an Asahipak NH2P-50 amine-bonded vinyl alcohol copolymer column. The deriv- 
atized mono- and oligosaccharides were sufficiently separated with isocratic elution and the separation efficiency for the derivatives was 
better than that for the underivatized counterparts. The column was remarkably stable relative to a conventional amine-bonded silica 
column and no decrease in the retention of the derivatives due to dissociation of the stationary phase was observed. 

INTRODUCTION 

High-performance liquid chromatography 
(HPLC) has been employed to separate oligosac- 
charides, and amine-bonded silica columns have 
mostly been used because of its high resolution and 
short analysis times [l-9]. However, the column has 
the disadvantage that considerable amounts of 
amine-bonded phase and silica itself dissociate into 
the mobile phase, which causes a gradual decrease 
in retention [lo]. An amine-bonded silica column is 
frequently used with acetonitrile-water mobile 
phases, oligosaccharides usually being separated 
without derivatization [l 11. Although measure- 
ments of refractive index and intrinsic ultraviolet 
(UV) absorption have been widely used for the de- 
tection of underivatized oligosaccharides, the sensi- 

tivity of these detection methods is low relative to 
that for oligosaccharides derivatized with UV-ab- 
sorbing or fluorescent compounds [12,13]. 

In this paper, the separation of mono- and oligo- 
saccharides derivatized with a UV-absorbing com- 
pound, ethylp-aminobenzoate (EAB), on an Asahi- 
pak NH2P-50 stable amine-bonded vinyl alcohol 
copolymer column is described. 

EXPERIMENTAL 

Materials 

* Present address: Hokkaido National Agricultural Experi- 
ment Station, Hitujigakoa, Toyohira-ku, Sapporo 061-01, 
Japan. 

Monosaccharides, dextran (200-300 kilodalton) 
and ethyl p-aminobenzoate (EAB) was purchased 
from Wako (Osaka, Japan). Malto-, isomalto-, cel- 
lo- and N-acetylchitooligosaccharides were ob- 
tained from Seikagaku Kogyo (Tokyo, Japan). The 
isomaltooligosaccharide series were also prepared 
by partial acid hydrolysis of dextran according to 
the slightly modified method of Yamashita et al. 
[14]: to a Pyrex tube with a PTFE-lined screw-cap 
containing 0.5 g of dextran were added 5 ml of 0.2 
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M HCI, followed by hydrolysis for 3 h at 100°C and 
the hydrolysate was passed through a Dowex l-X8 
(OH-) resin column (5 cm x 1 cm I.D.) to remove 
the acid. N-Acetylchitooligosaccharides were fur- 
ther purified by gel permeation chromatography on 
a Bio-Gel P-4 (Bio-Rad Labs., Richmond, CA, 
USA) column (100 cm x 1.5 cm I.D.) equilibrated 
with water. Sodium cyanoborohydride 
(NaBH3CN) was purchased from Aldrich (Milwau- 
kee, WI, USA). All other chemicals and solvents 
were of analytical-reagent or HPLC grade. 

High-performance liquid chromatography 
The HPLC system consisted of the following 

components from Waters Assoc (Milford, MA, 
USA): a multi-solvent delivery system (Model 
M600), a universal injector (Model U6K), a 
variable-wavelength detector (Model 450) and a 
differential refractometer (Model 410), with a com- 
puting integrator (Model C-R6A) from Shimadzu 
(Kyoto, Japan). Separations were done on an Asa- 
hipak NH2P-50 column (250 mm x 4.6 mm I.D.) 
packed with an amine-bonded vinyl alcohol 
copolymer gel (5 pm) (Asahikasei, Tokyo, Japan), 
and the column temperature was kept at 25°C if not 
specified otherwise. The mobile phase was aceto- 
nitrile-water. All elutions were done isocratically at 
a flow-rate of 0.5 ml/min. 

Derivatization qf mono- and oligosaccharides with 
EAB 

The procedure employed for labelling of mono- 
and oligosaccharides at their reducing end with 
EAB was done by the method of Wang et al. [15] 
with slight modification. To a Pyrex tube with a 
PTFE-lined screw-cap containing 10 ~1 of 0.3 M 
mono- and oligosaccharides were added 40 ~11 of 1.4 
A4 NaBH&N in distilled water, 350 ,~l of 0.6 M 
EAB in methanol and 40 ~1 of glacial acetic acid 
and the mixture was heated at 80°C. After 1 h, the 
reaction mixture was cooled and 1 ml of distilled 
water was added. The aqueous phase was extracted 
with four l-ml volumes of chloroform to remove 
excess of EAB and the aqueous phase containing 
derivatized mono- and oligosaccharides was lyo- 
philized. 
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RESULTS AND DISCUSSION 

Although the main feature of the Asahipak 
NH2P-50 amine-bonded vinyl alcohol copolymer 
column appears to be the separation of oligosaccha- 
rides by size, as reported for an amine-bonded silica 
column [l 11, the column could be employed for the 
resolution of both underivatized and EAB-deriva- 
tized mono- and disaccharides. The HPLC elution 
profiles of underivatized mono- and disaccharides 
eluted with acetonitrileewater (65:35) are shown in 
Fig. 1; it was not possible to separate glucose from 
N-acetylchitobiose and maltose from cellobiose 
(Fig. lA), or arabinose from N-acetylglucosamine 
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Fig. 1. Elution profiles of’ underivatized mono- and disaccha- 
rides. Peaks: (A) 1 = fucose; 2 = xylose; 3 = mannose; 4 = 
glucose; 5 = N-acetylchitobiose: 6 = maltose; 7 = cellobiose: 
8 = isomaltose: (B) 1 = rhamnose; 2 = arabinose; 3 = N- 
acetylglucosamine; 4 = galactose; 5 = lactose; 6 = melibiose: 
7 = gentiobiose. Column, Asahipak NH2P-50; mobile phase, 
acetonitrile-water (75:25); flow-rate, 0.5 ml/min. 
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Fig. 2. Elution profiles of mono- and disaccharide EAB deriv- 
atives. Peaks: (A) 1 = fucose; 2 = xylose; 3 = mannose; 4 = 
glucose; 5 = N-acetylchitobiose; 6 = maltose; 7 = cellobiose; 
8 = isomaltose derivatives; (B) 1 = rhamnose; 2 = arabinose; 
3 = N-acetylglucosamine; 4 = galactose; 5 = lactose; 6 = meli- 
biose; 7 = gentiobiose EAB derivatives. Column, Asahipak 

NH2P-50; mobile phase, acetonitrile-water (85: 15); flow-rate, 
0.5 ml/min. 

(Fig. 1B). However, much greater resolution was 
obtained when the corresponding mono- and oligo- 
saccharides were derivatized with EAB and eluted 
with acetonitrile-water (75:25) (Fig. 2A and B). The 
major mechanism for the retention of mono- and 
oligosaccharide EAB derivatives seems to be due to 
hydrogen bonding between the hydroxyl groups of 
the sugar residue and the amine group of the sta- 
tionary phase [7,8]. However, as a substantial im- 
provement in the separation of mono- and disac- 
charides was obtained by derivatization with EAB, 
a subtle interaction between the aromatic ring of 
EAB derivatives and the stationary phase appears 
to be responsible for the improved resolution. 

The retention times of mono- and disaccharide 
EAB derivatives separated with two mobile phases 
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are summarized in Table I. Monosaccharide EAB 
derivatives generally exhibited shorter retention 
times than disaccharide derivatives and were eluted 
in following 6-deoxyhexose (fucose and rhamnose), 
pentose (xylose and arabinose), N-acetylhexosa- 
mine (N-acetylglucosamine) and hexose (mannose, 
glucose and galactose) EAB derivatives, and this 
order was independent of the mobile phase used. As 
suggested in the HPLC of underivatized monosac- 
charides [lo], the absence of a hydroxyl group at the 
C-6 position of 6-deoxyhexose EAB and pentose 
EAB appears to be primarily associated with the 
shorter retention times of these derivatives. On the 
other hand, disaccharide EAB derivatives were suf- 
ficiently separated with acetonitrile-water (85: 15) 
and large increases in the retention times and peak 
widths were observed when the derivatives were 
eluted with acetonitrile-water (90: 10). 

The HPLC elution profiles of the isomalto-, mal- 
to- and cellooligosaccharide EAB series, which 
have a common constituent sugar (glucose) and dif- 
ferent linkage types, are shown in Fig. 3. The iso- 
maltooligosaccharide EAB series, which have an 
a-1-6-linkage (Fig. 3A) showed longer retention 
times than the maltooligosaccharide EAB series, 
which have an cl-1-Glinkage (Fig. 3B), suggesting 
that the presence of an cr-l-6-linkage in the struc- 
tures seems to be correlated with the increase in the 
retention times, as reported for underivatized oligo- 
saccharides [lo]. In contrast, only minimal differ- 
ences in the retention times were observed between 
the malto- and cellooligosaccharide EAB series 
(/I-14-linkage), indicating that an anomeric config- 
uration of the linkage is not likely to be responsible 
for changes in retention (Fig. 3C). 

The HPLC elution profiles of the cello- and N- 
acetylchitooligosaccharide EAB series, which have 
a common /?-1-Clinkage and different constituent 

sugars, glucose and N-acetylglucosamine, are 
shown in Fig. 4. The N-acetylchitooligosaccharide 
EAB series (Fig. 4B) exhibited considerably shorter 
retention times than the cellooligosaccharide EAB 
series (Fig. 4A). As the replacement of a hydroxyl 
group at the C-2 position with an acetoamide group 
is only the difference between the two oligosaccha- 
ride EAB series, the structural difference could be 
correlated with shift in the retention times, as in- 
dicated by Mellis and Baenziger [16]. 

Fig. 5 shows the HPLC elution profiles of mono- 
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TABLE I 
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RETENTION TIMES OF MONO- AND DISACCHARIDE EAB DERIVATIVES 

EAB derivative Structure Retention time (mm) 

Monosaccharides 

Fucose 
Rhamnose 
Xylosc 
Arabinose 
Mannose 
Galactose 
Glucose 
N-Acetylglucosamine 

Disaccharides 
Lactose 
Melibiose 
Gentiobiose 
Cellobiose 
Maltose 
Isomaltose 
Isomaltose 
N,N’-Diacetylchitobiose 

Fuc 7.6 10.3 

Rha 7.7 10.5 

XYl 8.6 12.8 

Ara 8.9 12.6 
Man 10.4 18.6 

Gal 11.6 20.9 

Glc 11.1 21.3 

GlcNAc 9.4 16.4 

Gal@-14Glc 20.7 57.3 
Gala- 16Glc 23.2 63.3 
Glcj?-1-6Glc 25.1 75.0 
Glca- 14Glc 22.0 61.9 
Glccc- 14Glc 19.8 50.0 

Glcr- 14Glc 19.8 50.0 

Glca- I-6Glc 23.7 69.2 
GlcNAc/&l4GlcNAc 16.4 36.6 

A B 

Acetonitrile-water Acetonitrile--water 
(8515) (90: 10) 

Elution time (min) 

C 

Fig. 3. Effect of linkage type on separation of oligosaccharide EAB series. (A) Isomaltooligosaccharide EAB series (Glca-1-6Glc); (B) 
maltooligosaccharide EAB series (Glca-14Glc); (C) cellooligosaccharide EAB series (Glc/&l-tGlc). The number above each peak 
indicates the number of sugar residues present. Column, Asahipak NH2P-50; mobile phase, acetonitrilc water (70:30): Row-rate, 0.5 
ml,‘min. 
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Fig. 4. Effect of constituent sugars on separation of oligosaccha- 
ride EAB series. (A) Cellooligosaccharide EAB series 
(Glcj-1-4Glc); (B) N-acetylchitooligosaccharide EAB series 
(GlcNAcB-1-4GlcNAc). The number above each peak indicates 
the number of sugar residues present. Column, Asahipak 
NH2P-50; mobile phase, acetonitrile-water (70:30); flow-rate, 
0.5 ml/mm. 

saccharide EAB derivatives separated at different 
column temperatures. Although variations in the 
column temperature led to the different elution pro- 
files in the HPLC of underivatized oligosaccharides 
[9,17], only slight differences in the elution profiles 
and the retention times of monosaccharide EAB de- 
rivatives were observed when operating temper- 
ature was increased from 25 to 45°C (Fig. 5A and 

B). 
The HPLC profiles of underivatized and EAB- 

derivatized isomaltooligosaccharide series derived 
from dextran by partial acid hydrolysis are com- 
pared in Fig. 6. The underivatized isomaltooligo- 
saccharide series having up to nine sugar residues 
were separated as single peaks with acetonitrile-wa- 
ter (6535) in less than 50 min (Fig. 6A). Although a 
similar separation of the underivatized isomaltooli- 
gosaccharide series was achieved by HPLC on a 
CIs-bonded vinyl alcohol copolymer column, alka- 
line eluents were necessary to circumvent an unde- 
sirable separation of a- and j?-anomeric peaks [18]. 
On the other hand, isomaltooligosaccharide EAB 
derivatives possessing up to thirteen or more sugar 
residues were well resolved with acetonitrilewater 
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Fig. 5. Effect of temperature on separation of monosaccharide 
EAB derivatives: (A) 25°C; (B) 45°C. Peaks: 1 = rhamnose; 2 = 
arabinose; 3 = N-acetylglucosamine; 4 = galactose EAB deriv- 
atives. Column, Asahipak NH2P-50; mobile phase, acetonitrile- 
water (90: IO); flow-rate, 0.5 ml/min. 

(65:35) (Fig. 6B). Isomaltooligosaccharides that 
was derivatized with EAB showed longer retention 
times than underivatized oligosaccharides in size 
fractionation on a Bio-Gel P-4 column [19], where- 
as isomaltooligosaccharide EAB derivatives 
showed lower retention times than the underiva- 
tized counterparts in HPLC on an Asahipak 
NH2P-50 column. The decrease in the retention 
times of the derivatives appears to be due to the 
interaction between the aromatic ring of EAB de- 
rivatives and the stationary phase. 

Fig. 7 shows the dependence of the retention 
times of isomaltooligosaccharide EAB derivatives 
on the acetonitrile concentration in the mobile 
phase. At the highest acetonitrile concentration ex- 
amined (70%), isomaltooligosaccharide EAB deriv- 
atives having nine sugar residues were well resolved 
in 50 min (Fig. 7A), whereas the derivatives with 
thirteen or more sugar residues were separated at a 
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Fig. 6. Elution profiles of underivatized and EAB-derivatized 
isomaltooligosaccharide series, (A) before derivatization and (B) 
after derivatization with EAB. The number above each peak in- 
dicates the number of sugar residues present. Column, Asahipak 
NH2P-50; mobile phase, acetonitrile-water (65:35): flow-rate, 
0.5 ml/min. 

60% acetonitrile concentration in 25 min (Fig. 7B). 
Further, the relationship between the retention 
times of the derivatives and acetonitrile concentra- 
tion in the mobile phase is summarized in Fig. 7C; 
increasing concentrations of acetonitrile resulted in 
a regular increase in the retention times of the deriv- 
atives, and the increase in retention approximated 
to an exponential increase in the range of 60-70% 
acetonitrile. 

In conclusion, mono- and oligosaccharides deriv- 
atized with EAB were well resolved with a simple 
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Fig. 7. Effect of acetonitrile concentration in the mobile phase on 
retention times of isomaltooligosaccharide EAB series, (A) 70% 
and (B) 60%, and (C) relationship between acetonitrile concen- 
tration and retention times of the derivatives. The numbers in- 
dicate the number of sugar residues present. Column. Asahipak 
NH2P-50; flow-rate, 0.5 ml/min. 

isocratic method. Further, the resolution of the un- 
derivatized mono- and oligosaccharides was greatly 
improved by derivatization with EAB. The column 
was clearly stable in comparison with conventional 
amine-bonded silica columns, and no decrease in 
the retention times of the derivatives was observed 
during the course of this study. The stable Asahi- 
pack NH2P-50 column could be useful for the prep- 
aration not only of mono- and oligosaccharide 
EAB derivatives, but also of their underivatized 
counterparts, free from dissociation products. 
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